Меню

Arduino uno управление теплицей

Контроллер для теплицы на Arduino

Контроллер для теплицы на Arduino.

Ссылки на компоненты:

ЖК-дисплей LCD1602 (синий экран) — http://ali.pub/alnru

Модуль расширителя интерфейса (I2C) — http://ali.pub/dwj5n

4- х канальный релейный модуль — http://ali.pub/1z8ol3

2-ух канальный релейный модуль — http://ali.pub/2cl1ai

Датчик Температуры — DS18B20

Контроллер для теплицы на Arduino.

Оставьте комментарий:

Навигация по сайту:

Юный Технарь:

Помощь проекту:

Деньги можно перечислить на карту Сбербанка России:

4276 5400 2194 5088

Поиск

Последние статьи

Ультразвуковой сканер пространства для с…

Ультразвуковой сканер пространства для слабо зрячих.

Посылка из Китая

Посылка из Китая.

Мой канал на YouTube

Подпишитесь!

2015, Arduinoprom.ru — блог Чилингаряна Грачика. Все авторские права на тексты принадлежат ему.

При размещении текстов и видеоматериалов на сторонних ресурсах активная гиперссылка ОБЯЗАТЕЛЬНА.

Все логотипы и товарные знаки, размещенные на сайте, принадлежат только их законным владельцам (правообладателям).

Источник статьи: http://arduinoprom.ru/arduino/347-kontroller-dlya-teplicy-na-arduino.html

Умная теплица на Arduino- делаем первые шаги

Умная теплица на Arduino- делаем первые шаги

Теплицы предназначены для обеспечения оптимального микроклимата для роста и развития растений. Это могут быть и большие промышленные сооружения и небольшое место на подоконнике для выращивания любимого цветка. Но даже за самой крохотной теплицей на подоконнике нужен уход: осуществление полива, поддержание нужной температуры, уровня освещенности и т.п.

Многие с удовольствием занялись подобным хозяйством, вот только ни сил, ни времени для этого нет. И только мечта подсказывает: вот бы такую конструкцию, которая бы настолько умной, что делала бы все сама. Такая теплица окажется востребованной теми, кто не хочет тратить много времени на уход за растениями, а также может не иметь для этого возможности в случае длительного отсутствия — командировок, отпуска и т.п.
Мы и приступим к созданию подобной теплицы, назовем ее умной. А поможет нам создавать умную теплицу контроллер Arduino. Какие же функции будет выполнять умная теплица?
Во-первых, необходимо оперативно получать всю необходимую информацию об климатических параметрах нашей теплицы: температура и влажность воздуха, температура и увлажненность почвы, освещенность теплицы. Т.е. осуществлять мониторинг климатических параметров теплицы.

Какую проблему клиента решит функция мониторинга? Прежде всего — устранит беспокойство насчет того, все ли в порядке c растениями во время его отсутствия: есть ли вода в системе, не выключалось ли электричество, может ли системе вентиляции обеспечить нужную температуру, если в помещении стало слишком жарко и т.п.

Выводить данные мониторинга можно на дисплей, или с помощью светодиодов оповещать о критических значениях климатических параметров, или получать данные через интернет или на планшет.
Далее, необходимо реализовать возможность управления теплицей – осуществлять полив, обогрев, вентиляцию растений, регулировать освещенность растений. Управление можно с помощью автоматики, или удаленно (через интернет или через телефон (планшет)).

Следующий этап – функция автономности теплицы. При снижении уровня увлажненности почвы ниже определенного значения, необходимо включить полив, при снижении температуры в теплице необходимо включить обогрев, освещенность теплицы необходимо производить по определенному циклу.

Рисунок 1. Схематическое изображение умной теплицы

В наших уроках мы рассмотрим практическую реализацию проекта умной теплицы. Создадим проект умной теплицы –
«Домашний цветок». И начнем с реализации функции мониторинга параметров теплицы. Для мониторинга нам необходимо получать следующие данные о окружаещей среде нашего цветка:

  1. температура воздуха;
  2. влажность воздуха;
  3. увлажненность почвы;
  4. освещенность цветка.

Для реализации функции мониторинга нам понадобятся следующие детали:

  1. Arduino Uno;
  2. Кабель USB;
  3. Плата прототипирования;
  4. Провода «папа-папа» – 15 шт;
  5. Фоторезистор – 1 шт;
  6. Резистор 10 кОм – 1 шт;
  7. Датчик температуры TMP36 – 1 шт;
  8. Модуль температуры и влажности воздуха DHT11 – 1 шт
  9. Модуль влажности почвы – 1 шт.

Позиции 1-6 имеются в наборах серии «Дерзай» («Базовый», « Изучаем Arduino » и «Умный дом»), датчик температуры TMP36 имеется в наборах «Базовый» и «Изучаем Arduino». Ссылки на позиции 8 и 9 будут даны в конце статьи.
Сначала познакомимся с датчиками, которые будем использовать для функции мониторинга параметров нашего проекта.
C помощью фоторезистора (рисунок 2) осуществляют измерение освещенности. Дело в том, что в темноте сопротивление фоторезистора весьма велико, но когда на него попадает свет, это сопротивление падает пропорционально освещенности.

Рисунок 2. Фоторезистор

Аналоговый датчик температуры TMP36 (рисунок 2) позволяет легко преобразовать выходной уровень напряжения в показания температуры в градусах Цельсия. Каждые 10 мВ соответствуют 1 0С, Вы можете написать формулу для преобразования выходного напряжения в температуру.

Смещение -500 для работы с температурами ниже 0 0C.

Рисунок 3. Аналоговый датчик температуры TMP36

Датчик DHT11 состоят из емкостного датчика влажности и термистора. Кроме того датчик содержит в себе простенький АЦП для преобразования аналоговых значений влажности и температуры. Будем использовать датчик в варианте модуля для Arduino (рисунок 4).

Рисунок 4. Модуль DHT11

Модуль влажности почвы (рисунок 5) предназначен для определения влажности земли, в которую он погружен. Он позволяет узнать о недостаточном или избыточном поливе ваших домашних или садовых растений. Модуль состоит из двух частей: контактного щупа YL-28 и датчика YL-38, щуп YL-28 соединен с датчиком YL-38 по двум проводам. Между двумя электродами щупа YL-28 создаётся небольшое напряжение. Если почва сухая, сопротивление велико и ток будет меньше. Если земля влажная — сопротивление меньше, ток — чуть больше. По итоговому аналоговому сигналу можно судить о степени влажности.

Рисунок 5. Модуль влажности почвы

Теперь соберем на макетной плате схему, представленную на рисунке 6.

Рисунок 6. Схема соединения для мониторинга параметров для «Домашний цветок «.

Приступим к написанию скетча. Фоторезистор, датчик температуры TMP36 и модуль влажности почвы – обычные аналоговые датчики. Для датчика TMP36 мы можем преобразовать аналоговые значения в показания температуры в градусах Цельсия. Для работы с модулем DHT11 будем использовать Arduino библиотеку DHT (Скачать). Данные будем измерять с интервалом 5 секунд и значения выводить пока в последовательный порт Arduino.
Создадим в Arduino IDE новый скетч, занесем в него код из листинга 1 и загрузим скетч на на плату Arduino. Напоминаем, что в настройках Arduino IDE необходимо выбрать тип платы (Arduino UNO) и порт подключения платы.

После загрузки скетча на плату, открываем монитор последовательного порта и наблюдаем вывод значений с показаниями наших датчиков (рисунок 7).

Рисунок 7. Вывод значений с показаниями наших датчиков в монитор последовательного порта Arduino.

А вот и наш выращиваемый цветок (рисунок 8).

Рисунок 8. Проект «Домашний цветок»

Смотреть показания датчиков через последовательный порт не совсем удобно, в следующем уроке рассмотрим более удобную индикацию показаний.

Источник статьи: http://playarduino.ru/uroki-arduino/umnaya-teplitsa-na-arduino-delaem-pervye-shagi/

УНИВЕРСАЛЬНЫЙ КОНТРОЛЛЕР

26.10.19 Версия 1.4.4: куча добавлений и исправлений, читайте доку версии 1.4
05.03.20 Версия платы 1.2: перемычки добавлены на верхний слой, при заказе плат v1.2 перемычки можно не запаивать! Добавлены шины i2c и 5V для удобства, также разведён WiFi модуль ESP-01. Его поддержки пока что нет.
10.05.20 Версия 1.6: куча всего нового

Изменения в версиях

  • Версия 1.1 – начальная версия
  • Версия 1.2
    • Оптимизация Flash памяти для дальнейших доработок
      • 5% за счёт упрощения логики работы EEPROM
      • 1% за счёт оптимизации вывода на дисплей
      • 7% за счёт избавления от класса String
    • Добавлен автоматический переход в окно DEBUG по таймеру неактивности
      • В этот же момент настройки автоматически сохраняются
    • Исправлена критическая ошибка в построении графиков
    • Добавлена настройка периодаграфика (сутки, час, минута)
    • График меняется в реальном времени
    • К режиму “по сенсору” добавлен гистерезис
      • В настройках режима «Sensor» вместо настройки Threshold (как в версии 1.1) теперь две настройки – minV и maxV. Обе настройки отвечают за пороговое значение с гистерезисом. Логика такая: если величина с датчика больше maxV – канал включается, если меньше minV – выключается.
    • Добавлен режим навигации “кликнул-изменил-кликнул”
    • Настройки в начале скетча:
      • SETT_TIMEOUT – таймаут неактивности (секунд), после которого автоматически откроется окно DEBUG и сохранятся настройки. Работает при всех активных окнах кроме DEBUG, SERVICE и окон графиков.
      • CONTROL_TYPE – тип управления энкодером
        • 0 – удерживание и поворот для изменения значения
        • 1 – клик для входа в изменение, повторный клик для выхода (стрелочка меняется на галочку)
  • Версия 1.3
    • Добавлены настройки SERVO1_RELAY и SERVO2_RELAY, позволяющие использовать каналы серво как реле
    • Исправлен баг в управлении CONTROL_TYPE 1
    • Добавлена поддержка датчика температуры ds18b20 на порту сенсора 1 (SENS1)
    • Добавлена поддержка термисторов на всех портах сенсоров (SENS1-SENS4)
      • Рассчитано на 10 кОм-ные NTC термисторы. Коэффициент b можно настроить
  • Версия 1.3.1
    • Поправлено несколько багов с приводом
  • Версия 1.3.2
    • Энкодер теперь работает на МЕГЕ
  • Версия 1.3.3
    • Исправлена критическая ошибка в режиме Timer RTC
  • Версия 1.4.3
    • Добавлена вкладка custom, на которой можно самому программировать каналы
    • Сильнее разбил код на вкладки
    • Режим рассвет теперь работает более плавно
    • ДЕНЬ НЕДЕЛИ ВСЁ ЕЩЁ НЕЛЬЗЯ НАСТРОИТЬ
    • Баги:
      • Убран лишний тип реле
      • Убрано отображение типа реле для ПИД и РАССВЕТ
      • Исправлено изменение Т в PID
      • Можно менять минуты в SERVICE и BKL TOUT
      • Исправлена “связь” между Timer и Week
  • Версия 1.5 (предварительная)
  • Версия 1.6 (предварительная)
    • Облегчённые библиотеки:
      • Для часов используется библиотека microDS3231
      • Для дисплея используется библиотека microLiquidCrystal_I2C
      • Для ds18b20 используется библиотека microDS18B20
      • Для BME280 используется библиотека GyverBME280
    • Чуть оптимизации кода
    • Исправлен баг с выводом инверсных состояний реле в окне DEBUG
    • Добавлена возможность работы с отрицательными температурами в режиме Sensor
    • Исправлено незапоминание настроек SP и PP в Service
    • ServoSmooth обновлена, работа серво улучшена
    • Исправлен баг с сохранением настроек
    • Ваши настройки при переходе на 1.5 будут сброшены!
    • В ПИД установка переделана на десятичные дроби
    • BME и Dallas выводят температуру в десятичных дробях
    • Шаги настроек изменены на более мелкие
    • Исправлена настройка времени в сервисе
    • Добавлен режим ПИД для каналов 1 и 2 (низкочастотный ШИМ). Каналы помечены *
    • Для “обратного” режима ПИД нужно ставить отрицательные коэффициенты!
    • В недельке можно выбрать время включения меньше времени выключения
    • Ещё оптимизация памяти
    • Добавлен “быстрый поворот” энкодера: шаг изменения значения увеличивается при быстром вращении
    • Чуть оптимизирован ПИД
    • Значения с точкой в графиках
    • Автоматический масштаб графика
    • Переделана структура меню настроек
    • Добавлена настройка даты в меню настроек
    • Воскресенье теперь цифра 7 (было 0)
    • Исправлена настройка времени в Timer RTC
    • Корректное отображение и работа каналов Servo, работающих как реле
    • Улучшена работа ПИД
    • Добавлены названия для доп. датчиков, улучшено оформление
    • Период опроса и период графиков перенесены в настройки
    • ЕЩЁ БОЛЬШЕ ОПТИМИЗАЦИИ
    • Добавлена поддержка датчика угл. газа MH-Z19. Есть возможность отключить автокалибровку.
    • Исправлена ошибка в графиках
    • ПИД и РАССВЕТ переделаны в линейное меню
    • Оптимизированы графики
    • Добавлена возможность отключить плавность серво для облегчения памяти
    • Оптимизация памяти и вывода на дисплей
    • Исправлен косяк с приводом при выходе из сервиса
    • Небольшие изменения в окне сервиса
    • Добавлено стартовое меню с сервисом и сбросом (включается по желанию)
    • Небольшая оптимизация памяти
    • Исправлено отображение реле с низким уровнем в сервисе
    • Добавлено расписание для ПИД. Ежедневное и на период в днях
    • Исправлен косяк с подсветкой
    • Исправлены критические ошибки с серво (пид и рассвет)
    • ИСПРАВЛЕНЫ ОШИБКИ С СОХРАНЕНИЕМ НАСТРОЕК
    • Сильная оптимизация оперативной памяти
    • Графики теперь сохраняются за все периоды (15 дней, 15 часов, 15 минут)
    • При выборе датчика значения сразу приравниваются к его показанию (pid, sensor)
    • Добавлен режим отладки ПИД (вывод графиков на ПК)
    • Небольшая оптимизация рассвета
    • Исправлен BME280 для отрицательных температур (обнови библиотеку)
    • Добавлена настройка направления серво для ПИД (на главной вкладке серво, Direction)
    • Система теперь знает, что дверь была открыта в ручном режиме и работает корректно
    • Добавлено ограничение интегральной составляющей в ПИД
    • Редизайн списка настроек
    • Добавлен автотюнер ПИД
    • Добавлена поддержка нескольких ds18b20 с разными режимами работы
    • Улучшена стабильность ds18b20 (библиотека обновилась)
    • В режиме Sensor система работает при выставлении одинаковых значений порога
    • Исправлена ошибка, связывающая каналы серво и реле
    • В ПИД регуляторе для инертных систем есть смысл поднять T, логика работы чуть изменилась
    • Установка таймаута привода в десятых секунды
    • Улучшена отзывчивость и точность энкодера
Читайте также:  Как обустроить газоны у подъезда

ОПИСАНИЕ СИСТЕМЫ

Описание

GyverControl – универсальный контроллер на Arduino для теплицы и других мест, где нужна автоматизация по таймеру или показателям микроклимата/другим датчикам, имеет 10 отдельно настраиваемых каналов управления, собран из недорогих китайских компонентов и заменяет несколько “магазинных” контроллеров разного назначения: управление поливом, освещением, открытием дверей, поддержанием температуры по расписанию и многого другого. Может использоваться как для теплиц/грядок, так и для аквариумов, террариумов, инкубаторов и прочих автоматических систем. Обязательно читайте документацию на контроллер (ссылки выше), там подробно рассказано обо всех возможностях. Здесь лишь краткий перечень!

Данный проект полностью открытый, то есть любой из вас может сделать себе контроллер для теплицы своими руками, GyverControl сочетает в себе контроллер полива, освещения, проветривания и многого многого другого. Самое главное, что сделать себе такой контроллер умной теплицы можно по себестоимости, т.е. по розничной стоимости китайских компонентов. А это очень дёшево.

Железо:

  • ArduinoNano (ATmega 328p) как главный контроллер системы
  • 10 каналов управления. Из них (в разных комбинациях):
    • 9 каналов с логическим выходом 5V, к которым можно подключать обычное реле, твердотельное реле, силовые ключи (транзисторы, модули на основе транзисторов)
    • 2 канала сервоприводов, подключаются обычные модельные серво больших и маленьких размеров
    • 2 канала ШИМ с высокой частотой (1 кГц) для управления скоростью моторов, яркостью светодиодных лент, мощностью обогревателей
    • 2 канала ШИМ с низкой частотой (1 Гц) для управления мощностью обогревателей
    • 1 канал управления линейным электроприводом с концевиками ограничения движения и работой по тайм-ауту
  • Датчик температуры воздуха (BME280)
  • Датчик влажности воздуха (BME280)
  • 4 аналоговых датчика (влажности почвы или других)
  • Модуль опорного (реального) времени RTCDS3231 с автономным питанием
  • Большой LCD дисплей (LCD 2004, 20 столбцов, 4 строки)
  • Орган управления – энкодер
  • Поддержка датчиков влажности DHT11/DHT22, температуры DS18b20, термисторов и датчика углекислого газа MH-Z19

Режимы:

  • Таймер – простой периодический таймер
  • Таймер RTC – периодический таймер с привязкой к реальному времени
  • Неделька – работа в выбранный промежуток времени в выбранные дни недели
  • Сенсор – релейная работа по выбранному датчику с настройкой периода опроса и гистерезисом
  • ПИД – регулятор для высокоточного поддержания заданного значения с датчика
  • Рассвет – плавное включение и выключение (закат) источника освещения в выбранное время

Программные фишки:

  • Хранение всех настроек в энергонезависимой памяти (не сбрасываются при перезагрузке)
  • Датчики влажности почвы (все аналоговые датчики) не находятся под постоянным напряжением, оно подаётся только на момент опроса, что позволяет продлить жизнь даже самым дешёвым датчикам влажности почвы (напряжение подаётся за 50 мс до опроса и выключается через 50 мс после).
  • Оптимизированный вывод данных на дисплей
  • Каждый из 10 каналов (7 реле, 2 серво и 1 привод) имеет индивидуальные настройки и может работать по таймеру или по датчикам
  • 4-6 режимов работы каждого канала: три разных таймера и работа по условию с датчиков, режимы ПИД и рассвет
  • Серво работает с моей библиотекой ServoSmooth, это обеспечивает плавное их движение: плавный разгон и торможение с ограничением максимальной скорости, а также отсутствие рывков и незапланированных движений при старте системы
  • Линейный привод имеет концевики, внешние кнопки для управления и настройку скорости движения. Частота ШИМ драйвера – 31 кГц, т.е. не пищит
  • Экран отладки, где отображается вся текущая информация о состоянии железа и датчиков
  • Графики температуры и влажности воздуха и показаний с аналоговых датчиков за последние сутки. Сохранение графиков за последние 15 минут, последние 15 часов и 15 суток. Сохраняются одновременно все периоды, можно менять какой отображается
  • Сервисное меню, позволяющее вручную управлять каждой железкой
  • Для ПИД регулятора есть также
    • Вывод графиков на компьютер для облегчения настройки коэффициентов (с версии 1.6)
    • Режим автоматической калибровки коэффициентов (с версии 1.6)

Применение, возможности

Применение как контроллер теплицы/бокса:

  • Периодичный полив (реле)
    • Схема с индивидуальными помпами/клапанами
    • Схема с одной помпой и несколькими клапанами
  • Полив на основе показаний датчиков влажности почвы
  • Управление освещением (реле) с привязкой ко времени суток
  • Проветривание (привод открывает окно/серво открывает заслонку) по датчику температуры или влажности воздуха
  • Увлажнение (включение увлажнителя) по датчику влажности воздуха
  • Обогрев (включение обогревателя) по датчику температуры
  • Выполнение действий сервоприводом (нажатие кнопок на устройствах, поворот рукояток, поворот заслонок, перемещение предметов) по датчику или таймеру
Читайте также:  Клумбы для сада самому

Применение как контроллер аквариума:

  • Режим рассвет для светодиодных лент (через МОСФЕТ) и ламп накаливания (сервопривод)
  • ПИД регулятор для поддержания температуры воды
  • Сервоприводы (2 шт) для сброса еды
  • Остальные каналы можно использовать по таймерам для запуска фильтров/аэраторов/подсветки

Применение как контроллер инкубатора:

  • ПИД регулятор для поддержания температуры и влажности
    • Режим расписания ПИД, в котором можно настроить автоматическое изменение температуры на выбранный период. Гайд по настройке пока что находится в группе ВК
  • Электропривод или серво по расписанию может наклонять лотки с яйцами

Применение как контроллер террариума:

  • Режим рассвет для светодиодных лент (через МОСФЕТ) и ламп накаливания (сервопривод). Позволяет настроить время, яркость и продолжительность рассвета и заката. Можно подключить две ленты разной теплоты и сделать тёплое освещение днём и холодное ночью.
  • ПИД регулятор для поддержания температуры
    • Режим расписания ПИД позволяет настроить удержание разной температуры в течение суток. Гайд по настройке пока что находится в группе ВК
  • Сервоприводы (2 шт) для кормёжки по таймеру
  • Остальные каналы можно использовать по таймерам для запуска фильтров/аэраторов/подсветки

Другие применения:

  • Система поддерживает 4 аналоговых датчика, это не обязательно должны быть датчики влажности почвы, у китайцев полно других «датчиков-модулей», которые точно так же подключаются к схеме:
    • Датчик света: «умная» система освещения, резервное освещение
    • Термистор (до 80 градусов): контроль нагрева объекта
    • Датчик звука: закрывание окна при сильном шуме снаружи (почему нет? =) )
    • Датчик ИК излучения (датчик пожара) – разные варианты сигнализации, или даже тушения (включаем помпу с водой, открываем кран сервой)
    • Датчик дождя: закрытие окон, сигнализирование, включение помп на откачку
    • Датчик уровня воды/датчик наличия воды: автоматическое наполнение резервуара, автоматическая откачка воды помпой из ёмкости/подвала, перекрытие водяных магистралей при протечке, сигнализация о протечке
    • Газоанализаторы в ассортименте: сигнализатор или даже проветривание (открываем окно) по уровню угарного газа и других промышленных газов
    • Оптический датчик препятствия: тут нужна фантазия
    • Потенциометр: как дополнительный орган контроля системы
  • Сервопривод довольно универсальная штука, может открывать/закрывать заслонки, может нажимать кнопки других устройств, вращать ручки регулировки других устройств, с приделанным шатуном получает возможность линейно перемещать предметы/ползунки других устройств. Сервоприводы есть разных размеров, от микро (2 кг/см) и средних (13 кг/см) до весьма мощных (50 кг/см)
  • Реле умеет замыкать контакты питания и управлять любыми устройствами, также реле может включить блок питания (например светодиодной ленты). Реле можно поставить параллельно проводам к кнопке другого устройства, и оно будет его включать или выключать.
  • Версия 1.4 и выше позволяет поддерживать температуру при помощи ПИД регулятора, для
    террариумов/инкубаторов/любого поддержания температуры:
    – Подавать ШИМ сигнал на полевой транзистор, управляющий нагревом
    – Поворачивать сервоприводом крутилку сетевого диммера
  • Версия 1.4 и выше имеет режим Рассвет, позволяющий использовать контроллер для
    аквариума/террариума и прочих «животных ферм»
  • Версия 1.5 и выше имеет режим “расписания ПИД”, который позволяет автоматически менять установку (температуру) по расписанию

Управление

  • Основным органом управления является энкодер, рукоятку которого может вращать и нажимать (она является кнопкой). При запуске системы мы попадаем на настройку канала 0. Вращая рукоятку энкодера можно перемещать курсор выбора (стрелочка) по пунктам меню. Чтобы изменить значение выбранного пункта, нужно нажать рукоятку энкодера и повернуть её, удерживая нажатой. Также можно кликнуть по кнопке, курсор изменится со стрелки на галочку >, и вращением можно изменить выбранную величину. Повторный клик вернёт стрелку, при помощи которой можно выбрать другой пункт меню. Удержанный поворот при выбранном имени канала – смена канала для настройки. Листаем направо и у нас будет по порядку 7 каналов реле, два серво и линейный привод.
  • Чтобы перейти к настройке режима, нужно навести на него курсор и кликнуть кнопкой, не поворачивая. Откроется окно настройки режима, выйти из которого можно кликнув по надписи BACK (назад). Удерживая и вращая рукоятку на выбранном названии режима можно сменить режим, всего их 4.
  • В корне меню (выбор каналов) листая налево от канала 0 будет экран отладки (DEBUG) и сервисный режим (SERVICE). На экране отладки показаны все текущие положения реле, приводов и показания с датчиков. Вращая рукоятку на экране отладки последовательно листаются суточные графики показаний с датчиков: температура воздуха, влажность и показания с аналоговых датчиков. Деления на графике имеют шаг 1.6 часа. На экране сервиса можно управлять любым каналом в ручном режиме, при активном экране сервиса автоматика не работает, система находится полностью в ручном режиме. Поворотом рукоятки можно выбрать нужный канал, положение серво или настройку текущего времени, и удержанным поворотом её изменить.
  • Если включить систему с зажатой рукояткой энкодера, произойдёт полный сброс настроек каналов и режимов.
  • В версии 1.5 и выше предусмотрен “быстрый поворот” энкодера: при быстром вращении настраиваемое значение меняетс яс бОльшим шагом.

Описание режимов и настроек

Режимы работы каналов

  1. Таймер – простой периодичный таймер: задаются периоды ПАУЗЫ и время РАБОТЫ в формате ЧЧ:ММ:СС. С периодом ПАУЗЫ совершается выбранное действие и выполняется в течение периода РАБОТЫ. Например, ПАУЗА стоит 1 час, РАБОТА – 10 секунд. Каждый час будет совершаться действие в течение 10 секунд, то есть если выбран канал реле, то реле включится и выключится через 10 секунд, затем снова включится через час и выключится через 10 секунд и так далее. Как канал ведёт себя на участке РАБОТЫ задаётся в параметре НАПРАВЛЕНИЕ, то есть это может быть вкл/выкл и выкл/вкл (реле), направо/налево и налево/направо (серво) и открыть/закрыть и закрыть/открыть (линейный привод). Данный режим не имеет привязки к реальному времени, перезагрузка системы сбрасывает текущий таймер. Внимание! РАБОТА не должна быть дольше ПАУЗЫ!
    • Мин. значение: 1 секунда
    • Макс. значение: 999 часов
    • Привязка к реальному времени: нет
    • Применение: полив в гидропонных системах, проветривание без датчика
  1. ТаймерRTC – периодичный таймер, в отличие от предыдущего обладает привязкой к реальному времени, имеет настройку ПЕРИОДА включения и продолжительности РАБОТЫ (в секундах), которая будет совершаться, и СТАРТ – начального часа, с которого начинается отсчёт периода (для периодов больше 2 часов). Например, период 15 минут, работа 10 секунд: каждые 15 минут будет производиться действие продолжительностью 10 секунд. Привязка к реальному времени работает следующим образом: действие будет совершаться с выбранным периодом от начала часа, то есть если выбран 15 минутный, то действие будет в 0, 15, 30 и 45 минуткаждогочаса. Если выбранный ПЕРИОД больше часа (от двух и более) то можно выбрать час СТАРТА, от которого пойдёт отсчёт. Все периоды кратны 24 часам, поэтому работа начинается в одни и те же часы каждого дня! Пример: ПЕРИОД 8 часов, начальный час 0. Действие будет выполнено в 0, 8 и 16 часов каждого дня. Если поставить начальный час (СТАРТ) 3 часа, то действие будет выполнено в 3, 11 и 19 часов каждого дня. При сбросе питания следующее действие будет совершено в ближайшее время «будильника». Внимание! РАБОТА не должна быть дольше ПЕРИОДА!
    • Периоды на выбор: каждые 1, 5, 10, 15, 20, 30, 60 минут и 1, 2, 3, 4, 6, 8, 12, 24 часа
    • Привязка к реальному времени: да
    • Применение: полив в гидропонных системах, проветривание без датчика
Читайте также:  Как часто нужно делать аэрацию газона
Период Раз в сутки Когда срабатывает
1 мин 1440 Каждую минуту
3 мин 480 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57 мин. каждого часа
5 мин 288 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 мин. каждого часа
10 мин 144 0, 10, 20, 30, 40, 50 мин. каждого часа
15 мин 96 0, 15, 30, 45 мин. каждого часа
30 мин 48 0, 30 мин. каждого часа
1 час 24 Каждый час
2 часа 12 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 часа каждого дня (+ сдвиг на стартовый час)
3 часа 8 0, 3, 6, 9, 12, 15, 18, 21 час каждого дня (+ сдвиг на стартовый час)
4 часа 6 0, 4, 8, 12, 16, 20 часов каждого дня (+ сдвиг на стартовый час)
6 часов 4 0, 6, 12, 18 часов каждого дня (+ сдвиг на стартовый час)
8 часов 3 0, 8, 16 часов каждого дня (+ сдвиг на стартовый час)
12 часов 2 0, 12 часов каждого дня (+ сдвиг на стартовый час)
24 часа 1 0 часов каждого дня (+ сдвиг на стартовый час)
  1. Week (бывший Day) – простой таймер на одно действие с привязкой к реальному времени, имеет настройку On (время в формате ЧЧ:ММ:СС) – время, с которого действие активно, и Off (время в формате ЧЧ:ММ:СС) – время, с которого действие не активно. Также имеется 7 «ячеек» – дней недели Days, с понедельника по воскресенье. При перезагрузке действие вернётся в нужное положение согласно текущему времени. Пример: таймер настроен на 6 и 20 часов (Start и Stop). Соответствующее текущему каналу и параметру Direction действие будет активно с 6 до 20 часов, и неактивно с 20 до 6 часов утра следующего дня. При внезапной перезагрузке система совершит действие так, как оно должно быть на этом отрезке времени, то есть из прошлого примера если в промежуток между 6 и 20 часами произойдёт внезапная перезагрузка, при запуске система активирует действие по каналу. Внимание! On должен быть меньше Off!
    Также режим имеет настройку Global, которая вынуждает любой другой режим работать «по расписанию» Week. Что это даёт: например можно настроить полив во вторник и пятницу с 17 до 18 часов вечера (из бочки), поставить галочку global и настроить режим Sensor под полив. Как это будет работать: система будет поливать этот канал по режиму Sensor, но делать это только по расписанию (вторник и пятница 17-18).
    • Выбор дня недели
    • Выбор времени: 0-23 часа, кратно 1 часу
    • Привязка к реальному времени: да
    • Применение: идеальный режим для освещения и редкого полива
  1. Датчик – действие на основе датчика. С периодом опроса ПЕРИОД опрашивается выбранный датчик под названием ДАТЧИК и при превышении порогового значения ПОРОГ выполняется действие согласно выбранному каналу (реле/серво/привод). ПЕРИОД опроса опроса задаётся в секундах или минутах (по мере увеличения). Датчик выбирается из списка: Т.ВЗД. – температура воздуха, В.ВЗД. – влажность воздуха и 4 аналоговых датчика (влажности почвы) с SENS_1 по SENS_4. ПОРОГовое значение задаётся с 0 до 1023 с шагом 1 до значения 50 и с шагом 10 начиная от 50 (датчики влажности почвы имеют диапазон значений 0-1023). Например, выбран датчик температуры воздуха, период опроса 1 час и пороговое значение 25. Каждый час система проверяет температуру, при превышении 25 градусов будет выполнено соответствующее каналу действие (включить реле, открыть окно). Через час будет снова произведена проверка.
    • Применение: открытие/закрытие створок по температуре/влажности (привод), полив по влажности почвы, управление вентилятором/увлажнителем (реле) или заслонками (серво) по температуре/влажности.
  1. PID (для каналов 3, 4 и серво) – пропорционально-интегрально-дифференциальный регулятор, позволяет с высокой точностью поддерживать управляемую величину (нагреватель-температура, заслонка-температура, вентилятор-температура, вентилятор-влажность, и так далее). Режим доступен для каналов 3 и 4 (отмечены звёздочкой), а также обоих каналов серво в режиме серво. Имеет настройки коэффициентов P, I, D (D вам скорее всего не пригодится в реальной работе, но он там всё равно есть). Выбираем Sens – источник входного сигнала – один из сенсоров, как в режиме Sensor (Air t. – температура воздуха, Air h. – влажность воздуха и 4 аналоговых датчика (влажности почвы) с SENS_1 по SENS_4). Настройка Set указывает, к какому значению показания с выбранного датчика регулятор будет стараться приводить систему. Настройка
    T задаёт период итерации расчёта, для медленных процессов есть смысл поставить побольше (читайте в отдельной главе «Настройка ПИД регулятора»). Настройки min и max отвечают за минимальный и максимальный управляющий сигнал с данного канала, для каналов 3 и 4 это ШИМ сигнал, рабочий диапазон 0-255. Для каналов серво это угол, 0-180 градусов.
    • Применение : поддержание заданной величины (температура, влажность) не релейным способом, т.е. плавно и без резких включений. ШИМ сигнал может управлять транзистором, который отвечает за нагреватель. Серво может поворачивать заслонки (проветривание) или крутилки диммеров для управления сетевыми нагревателями, вентиляторами и прочим оборудованием.
  1. Рассвет (для каналов 3, 4 и серво) – режим «рассвета» для контроля освещения с плавным рассветом и закатом. Режим доступен для каналов 3 и 4 (отмечены звёздочкой), а также обоих каналов серво в режиме серво. Плавно включается в час Start на протяжении Dur минут, затем выключается в час Stop в течение Dur минут. Включается до максимального значения, указанного в max, и выключается до min. На каналах 3 и 4 эта величина задаёт скважность ШИМ сигнала, рабочий диапазон 0 – 255. Управлять можно полевым транзистором, например, светодиодной лентой. На каналах серво рабочий диапазон 0 – 180, градусов поворота вала серво. Может управлять крутилкой сетевого диммера, для ламп накаливания или диммируемых светодиодных.
    • Применение : организация условий освещённости, приближенных к реальным, для аквариумов, террариумов, курятников и проч.

Источник статьи: http://alexgyver.ru/gyvercontrol/

Adblock
detector